Volume 3, Issue 1 (2024)                   GMJM 2024, 3(1): 37-41 | Back to browse issues page



How to cite this article
Baratashvili A, Javakhishvili E, Tarkhnishvili E, Kvantidze I. Effect of Carvacrol and Voluntary Exercise on Hippocampus Molecular Profile of High-Fat Dieted Male Rats. GMJM 2024; 3 (1) :37-41
URL: http://gmedicine.de/article-2-248-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Georgian Center for Neuroscience Research, International Center for Intelligent Research, Tbilisi, Georgia
* Corresponding Author Address: Georgian Center for Neuroscience Research, International Center for Intelligent Research, Tbilisi, Georgia. (isabelkvantidze@gmail.com)
Abstract   (512 Views)
Aims: High-fat diet (HFD) is one risk factor in some disorders and increases oxidative stress. The use of carvacrol and voluntary exercise can be profitable. This study was thus conducted to evaluate the single and combined effects between carvacrol and voluntary exercise on gene expression in hippocampus of male rats fed with high-fat diet.
Materials & Methods: A total number of 60 adult Wistar male rats were divided into 5 groups: 1) Healthy control, 2) HFD group, 3) VE group that received HFD plus voluntary exercise, 4) Carvacrol group received HFD plus Carvacrol and 5) VE + Carvacrol group that received HFD plus Carvacrol and voluntary exercise. Gene expression of hippocampal brain-derived neurotrophic factor (BDNF), Tropomyosin receptor kinase B (Trk-B), synapsin I and Cyclic AMP-Response Element Binding protein (CREB) were investigated.
Findings: HFD significantly decreased expression of BDNF, Trk-B, synapsin I and CREB, but inclusion of carvacrol and the use of voluntary exercise could significantly increased gene expression of BDNF, Trk-B, synapsin I and CREB (p<0.05). The best responses were observed in animals fed with carvacrol in along to voluntary exercise (p<0.05).
Conclusion: Carvacrol and voluntary exercise improve gene expression of BDNF, Trk-B, synapsin I and CREB in rats fed with HFD.

1. Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24(5):725-43. [Link] [DOI:10.1016/j.jnutbio.2013.01.002]
2. Cao H, Yu S, Yao Z, Galson DL, Jiang Y, Zhang X. Activating transcription factor 4 regulates osteoclast differentiation in mice. J Clin Invest. 2010;120:2755-66. [Link] [DOI:10.1172/JCI42106]
3. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25(9):2078-88. [Link] [DOI:10.1002/jbmr.82]
4. Bastien M, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369-81. [Link] [DOI:10.1016/j.pcad.2013.10.016]
5. Stachowiak EK, Srinivasan M, Stachowiak MK, Patel MS. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life. Metab Brain Dis. 2013;28(4):721-5. [Link] [DOI:10.1007/s11011-013-9437-8]
6. Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P. High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol. 2006;13(12):1385-8. [Link] [DOI:10.1111/j.1468-1331.2006.01500.x]
7. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez Pinilla F. A highfat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112(4):803-14. [Link] [DOI:10.1016/S0306-4522(02)00123-9]
8. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brainderived neurotrophic factor. Neurosci Lett. 2010;482(3):235-9. [Link] [DOI:10.1016/j.neulet.2010.07.046]
9. Broad KD, Mimmack ML, Keverne EB, Kendrick KM. Increased BDNF and Trk-B mRNA expression in cortical and limbic regions following formation of a social recognition memory. Eur J Neurosci. 2002;16(11):2166-74. [Link] [DOI:10.1046/j.1460-9568.2002.02311.x]
10. Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL. Neurotrophins stimulate phosphorylation of synapsin I byMAPkinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A. 1996;93(8):3679-83. [Link] [DOI:10.1073/pnas.93.8.3679]
11. Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci. 2000;3(4):323-9. [Link] [DOI:10.1038/73888]
12. White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez Kim SO, Hise TL, et al. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: Contributions of maternal diet. Neurobiol Dis. 2009;35(1):3-13. [Link] [DOI:10.1016/j.nbd.2009.04.002]
13. Zhang X, Dong F, Ren J, Driscoll MJ, Culver B. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol. 2005;191(2):318-25. [Link] [DOI:10.1016/j.expneurol.2004.10.011]
14. Ganji A, Salehi I, Sarihi A, Shahidi S, Komaki A. Effects of hypericum scabrum extract on anxiety and oxidative stress biomarkers in rats fed a long term high fat diet. Metab Brain Dis. 2017;32(2):503-11. [Link] [DOI:10.1007/s11011-016-9940-9]
15. Amiri R, Akbari M. The role of carvacrol as active compound of essential oils in diabetes. Biomed J Sci Tech Res. 2018;11(1):8310-2. [Link] [DOI:10.26717/BJSTR.2018.11.002054]
16. Berger JP, Akiyama TE, Meinke PT. PPARs: Therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26(5):244-51. [Link] [DOI:10.1016/j.tips.2005.03.003]
17. Tabibzadeh Dezfuli SA, Ehsani M, Lakzaei Azar O. Carvacrol Alleviated negative effects of diabetes on inflammation and oxidation by modulation in gene expression of inflammatory and antioxidant system in diabetic rat model. GMJ Med. 2017;1(1):15-20. [Link] [DOI:10.29088/GMJM.2017.15]
18. Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101:1237-42. [Link] [DOI:10.1152/japplphysiol.00500.2006]
19. Moradi Kor N, Ghanbari A, Rashidipour H, Yousefi B, Bandegi AR, Rashidy Pour A. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats. Horm Behav. 2019;112:20-31. [Link] [DOI:10.1016/j.yhbeh.2019.03.004]
20. Van Praag H., Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680-5. [Link] [DOI:10.1523/JNEUROSCI.1731-05.2005]
21. Patten AR, Sickmann H, Hryciw BN, Kucharsky T, Parton R, Kernick A, et al. Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learn Mem. 2013;20(11):642-7. [Link] [DOI:10.1101/lm.030635.113]
22. Furnes MW, Zhao CM, Chen D. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg. 2009;19(10):1430-8. [Link] [DOI:10.1007/s11695-009-9863-1]
23. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Rev. 2007;8(1):21-34. [Link] [DOI:10.1111/j.1467-789X.2006.00270.x]
24. Klein S, Coppack SW, Mohamed Ali V, Landt M. Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes. 1996;45(7):984-7. [Link] [DOI:10.2337/diab.45.7.984]
25. Nehrenberg DL, Hua K, Estrada Smith D, Garland T, Pomp D. Voluntary exercise and its effects on body composition depend on genetic selection history. Obesity (Silver Spring). 2009;17(7):1402-9. [Link] [DOI:10.1038/oby.2009.51]
26. Lee KW, Everts H, Kappert HJ, Yeom KH, Beynen AC. Dietary carvacrol lowers body weight gain but improves feed conversion in female broiler chickens. J Appl Poult Res. 2003;12(4):394-9. [Link] [DOI:10.1093/japr/12.4.394]
27. Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview. Auton Neurosci. 2006; 126-127:30-8. [Link] [DOI:10.1016/j.autneu.2006.02.027]
28. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. 2000;19(6):1290-1300. [Link] [DOI:10.1093/emboj/19.6.1290]
29. LyonsWE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A. 1999;96(26):15239-44. [Link] [DOI:10.1073/pnas.96.26.15239]
30. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736-42. [Link] [DOI:10.1038/nn1073]
31. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al. A de novo mutation affecting human trkb associated with severe obesity and developmental delay. Nat Neurosci. 2004;7(11):1187-9. [Link] [DOI:10.1038/nn1336]
32. Cao L, Lin EJ, Cahill MC, Wang C, Liu X, During MJ. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med. 2009;15(4):447-54. [Link] [DOI:10.1038/nm.1933]
33. Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology. 2005;146(12):5612-20. [Link] [DOI:10.1210/en.2005-0419]
34. Motamedi S, Karimi I, Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab Brain Dis. 2017;32(3):651-65. [Link] [DOI:10.1007/s11011-017-9997-0]
35. Das UN. Obesity: Genes, brain, gut and environment. Nutrition. 2010;26(5):459-73. [Link] [DOI:10.1016/j.nut.2009.09.020]