Volume 3, Issue 2 (2024)                   GMJM 2024, 3(2): 53-57 | Back to browse issues page
Subject:

Print XML PDF HTML


History

How to cite this article
Tabibzadeh Dezfuli S, Ehsani M, Lakzaei Azar O. Modulation Effects of Carvacrol on Inflammatory and Antioxidant System’s Gene Expression of Diabetic Rats. GMJM 2024; 3 (2) :53-57
URL: http://gmedicine.de/article-2-251-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Trauma and Emergency Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
2- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Iran
3- Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran
* Corresponding Author Address: Lahijan Branch, Islamic Azad University, Lahijan, Iran. (omid.lakzaieazar@yahoo.com)
Abstract   (554 Views)
Aims: Diabetes has been known as a prevalence disorder and the use of common drugs has been faced many issues with multiple limitations. This study aimed to evaluate the use of carvacrol, as a novel agent, for treatment of diabetes.
Materials & Methods: In this experimental study, a single dose of streptozotocin (55mg/kg body weight) was used to induce the diabetes in rats. The animals were devided into 5 groups; healthy (negative control), diabetic (positive control), and diabetic given carvacrol in 5-, 10- and 15mg/kg body weight/day of carvacrol in neutral sterile olive oil solution. The levels of malondialdehyde, catalase, superoxide dismutase, and glutathione peroxidase (GPX) activities were evaluated. The levels of IL-1β, IL-6 and TNF-α expression in liver were assessed.
Findings: Streptozotocin increased the levels of malondialdehyde, IL-1β, IL-6 and TNF-α and also decreased activities of catalase, superoxide dismutase and glutathione peroxidase (p<0.05). Oral administration of carvacrol, especially 15mg/kg body weight/day, decreased the levels of malondialdehyde, IL-1β, IL-6 and TNF-α and also increased activities of catalase, superoxide dismutase and glutathione peroxidase in comparison to diabetic control (p<0.05).
Conclusion: Carvacrol decrease the negative effects of diabetes on inflammation and antioxidant status.
 
Keywords:
   

References
1. Kahraman C, Yümün G, Kahraman N, Namdar N, Cosgun S. Neutrophil-to-lymphocyte ratio in diabetes mellitus patients with and without diabetic foot ulcer. Eur J Med Sci. 2014;1(1):8-13. [Link] [DOI:10.12973/ejms.2014.102p]
2. Colhoun H, Schalkwijk C, Rubens M, Stehouwer C. C-reactive protein in type 1diabetes and its relationship to coronary artery calcification. Diabetes Care. 2002;25(10):1813-7. [Link] [DOI:10.2337/diacare.25.10.1813]
3. Hayaishi Okano R, Yamasaki Y, Katakami N, Ohtoshi K, Gorogawa S. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with type 1 diabetes. Diabetes Care. 2002;25(8):1432-8. [Link] [DOI:10.2337/diacare.25.8.1432]
4. Jialal I, Devaraj S, Venugopal S. Oxidative stress, inflammation and diabeticvasculopathies: The role of alpha tocopherol therapy. Free Radic Res. 2002;36(12):1331-6. [Link] [DOI:10.1080/1071576021000038531]
5. Ghaderian SB, Hayati F, Shayanpour S, Mousavi SSB. Diabetes and end-stage renal disease; A review article on new concepts. J Renal Inj Prev. 2015;4(2):28-33. [Link]
6. Magri CJ, Fava S. The role of tubular injury in diabeticnephropathy. Eur J Intern Med. 2009;20(6):551-5. [Link] [DOI:10.1016/j.ejim.2008.12.012]
7. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. [Link] [DOI:10.1161/CIRCRESAHA.110.223545]
8. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139-52. [Link] [DOI:10.1042/CS20120198]
9. Schmidt AM, Yan SD, Wautier JL, Stern DM. Activation of receptor for advanced glycation end products-a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-97. [Link] [DOI:10.1161/01.RES.84.5.489]
10. Romano M, Pomilio M, Vigneri S, Falco A, Chiesa PL, Chiarelli F, et al. Endothelial perturbation in children and adolescents with type 1diabetes: Association with markers of the inflammatory reaction. Diabetes Care. 2001;24(9):1674-8. [Link] [DOI:10.2337/diacare.24.9.1674]
11. Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun. 2016;478(3):1021-7. [Link] [DOI:10.1016/j.bbrc.2016.07.039]
12. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365-73. [Link] [DOI:10.1016/j.biopha.2005.07.002]
13. Amiri R, Akbari M. The role of carvacrol as active compound of essential oils in diabetes. Biomed J Sci Tech Res. 2018;11(1):8310-2. [Link] [DOI:10.26717/BJSTR.2018.11.002054]
14. Kirimer N, Baser KHC, Tumen G. Carvacrol rich plants in Turkey. Chem Nat Comp. 1995;31(1):37-42. [Link] [DOI:10.1007/BF01167568]
15. Berger JP, Akiyama TE, Meinke PT. PPARs: The rapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26(5):244-51. [Link] [DOI:10.1016/j.tips.2005.03.003]
16. Kallistratos G, Evangelou A, Agnantis N, Fasske E, Karkabounas S, A Donos. Enhancement of the antineoplastic effect of anticarcinogens on benzo(a)pyrene-treated Wistar rats, in relation to their number and biological activity. Cancer Lett. 1994;82(2):153-65. [Link] [DOI:10.1016/0304-3835(94)90006-X]
17. Evangelou A, Kalpouzos G, Karkabounas S, Liasko R, Nonni A, Stefanou D, et al. Dose-related preventive and therapeutic effects of antioxidants-anticarcinogens on experimentally induced malignant tumors in Wistar rats. Cancer Lett. 1997;115(1):105-11. [Link] [DOI:10.1016/S0304-3835(97)04712-5]
18. Mansouri E, Panahi M, Ghaffari MA, Ghorbani A. Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed J. 2011;15(3):100-6. [Link]
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 1976;72:248-54. [Link] [DOI:10.1016/0003-2697(76)90527-3]
20. Khan HA, Abdelhalim MAK, Alhomida AS, Al Ayed MS. Transient increase in IL-1β, IL-6 and TNF-α gene expression in rat liver exposed to gold nanoparticles. Genet Mol Res. 2013;12(4):5851-7. [Link] [DOI:10.4238/2013.November.22.12]
21. Manna P, Ghosh J, Das J, Sil PC. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid. Toxicol Appl Pharmacol. 2010:244(4);114-29. [Link] [DOI:10.1016/j.taap.2009.12.024]
22. Yang H, Jin X, Lam CWK, Yan SK. Oxidative stress and diabetes mellitus. Clin Chem LabMed. 2011;49:1773-82. [Link] [DOI:10.1515/cclm.2011.250]
23. Arulselvan P, Subramanian S. Ultra structural and biochemical abnormalities in the liver of streptozotocin-diabetic rats: Protective effects of Murraya koenigii. J Pharmacol Toxicol.2008;3(3):190-202. [Link] [DOI:10.3923/jpt.2008.190.202]
24. Saxena M, Modi D. Inflammation and diabetes. Interdiscip J Microinflammation. 2014;1(1):1-3. [Link]
25. Wu T, Dorn J, Donahue R, Sempos C, Trevisan M. Associations of serum C-reactive protein with fasting insulin, glucose, and glycosylated hemoglobin. Am J Epidemiol. 2002;155(1):65-71. [Link] [DOI:10.1093/aje/155.1.65]
26. Fichtlscherer S, Rosenberger G, Walter D, Breuer S, Dimmeler S, Zeiher A. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation.2000;102(9):1000-6. [Link] [DOI:10.1161/01.CIR.102.9.1000]
27. Ezhumalai M, Radhiga T, Viswanathan Pugalendi K. Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem. 2014;385(1-2):23-31. [Link] [DOI:10.1007/s11010-013-1810-8]
28. Srinivasan S, Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem Biol Interact. 2012;195(1):43-51. [Link] [DOI:10.1016/j.cbi.2011.10.003]
29. Erejuwa OO, Gurtu S, Sulaiman SA, Ab Wahab MS, Sirajudeen KNS, Md Salleh MS. Hypoglycemic andantioxidant effects of honey supplementation in streptozotocininduceddiabetic rats. Int J Vitamin Nutr Res. 2010:80(1);74-82. [Link] [DOI:10.1024/0300-9831/a000008]
30. Deng W, Lu H, Teng J. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci. 2009;51(3):813-9. [Link] [DOI:10.1007/s12031-013-0069-6]
31. Nasirian F, Dadkhah M, Moradi Kor N, Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes. 2018;11:375-80. [Link] [DOI:10.2147/DMSO.S172104]
32. Mesbahzadeh B, Rajaei SA, Tarahomi P, Seyedinia SA, Rahmani M, et al. Beneficial effects of spirogyra neglecta extract on antioxidant and anti-inflammatory factors in streptozotocin-induced diabetic rats. Biomol Concepts. 2018;9(1):184-9. [Link] [DOI:10.1515/bmc-2018-0015]

Send email to the article author